Acute regulation of the epithelial sodium channel gene by vasopressin and hyperosmolality.
نویسندگان
چکیده
The amiloride-sensitive epithelial sodium channel (ENaC) plays a key role in sodium reabsorption in the collecting ducts. We examined ENaC mRNA distribution along the nephron and acute effects of vasopressin and hyperosmolality on ENaC mRNA expression. ENaCalpha, beta, and gamma mRNA expressions were observed in cortical, outer medullary and initial inner medullary collecting ducts (CCD, OMCD and ilMCD, respectively). ENaCalpha mRNA expression was also observed in medullary and cortical thick ascending limbs (MAL and CAL, respectively), while ENaCbeta and gamma mRNA expressions were not observed. Furthermore, ENaCalpha mRNA expression in MAL but not in collecting ducts was stimulated by acute exposure to arginine vasopressin (AVP), 8-(4-chlorophenylthio) (CPT)-cAMP and hyperosmolality. However, the physiological significance of these effects is not known, since ENaC protein is reported to be absent in MAL. These data suggest that ENaCalpha mRNA expression in MAL but not in collecting ducts is acutely regulated by AVP and hyperosmolality. The absence of stimulation of ENaCalpha mRNA expression in collecting ducts suggests the physiological significance of ENaCbeta and gamma mRNA for acute regulation by vasopressin. Determining the physiological significance of the acute effect of vasopressin in MAL will require further investigations.
منابع مشابه
Vasopressin regulation of sodium transport in the distal nephron and collecting duct.
Arginine vasopressin (AVP) is released from the posterior pituitary gland during states of hyperosmolality or hypovolemia. AVP is a peptide hormone, with antidiuretic and antinatriuretic properties. It allows the kidneys to increase body water retention predominantly by increasing the cell surface expression of aquaporin water channels in the collecting duct alongside increasing the osmotic dri...
متن کاملVasopressin-mediated regulation of epithelial sodium channel abundance in rat kidney.
Sodium transport is increased by vasopressin in the cortical collecting ducts of rats and rabbits. Here we investigate, by quantitative immunoblotting, the effects of vasopressin on abundances of the epithelial sodium channel (ENaC) subunits (alpha, beta, and gamma) in rat kidney. Seven-day infusion of 1-deamino-[8-D-arginine]-vasopressin (dDAVP) to Brattleboro rats markedly increased whole kid...
متن کاملEpithelial sodium channel abundance is decreased by an unfolded protein response induced by hyperosmolality
Large shifts of osmolality occur in the kidney medulla as part of the urine concentrating mechanism. Hyperosmotic stress profoundly challenges cellular homeostasis and induces endoplasmic reticulum (ER) stress. Here, we examined the unfolded protein response (UPR) in hyperosmotically-challenged principal cells of the kidney collecting duct (CD) and show its relevance in controlling epithelial s...
متن کاملActivation of the epithelial Na+ channel in the collecting duct by vasopressin contributes to water reabsorption.
We used patch-clamp electrophysiology on isolated, split-open murine collecting ducts (CD) to test the hypothesis that regulation of epithelial sodium channel (ENaC) activity is a physiologically important effect of vasopressin. Surprisingly, this has not been tested directly before. We ask whether vasopressin affects ENaC activity distinguishing between acute and chronic effects, as well as, p...
متن کاملVasopressin V2 receptors, ENaC, and sodium reabsorption: a risk factor for hypertension?
Excessive sodium reabsorption by the kidney has long been known to participate in the pathogenesis of some forms of hypertension. In the kidney, the final control of NaCl reabsorption takes place in the distal nephron through the amiloride-sensitive epithelial sodium channel (ENaC). Liddle's syndrome, an inherited form of hypertension due to gain-of-function mutations in the genes coding for EN...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Hypertension research : official journal of the Japanese Society of Hypertension
دوره 26 8 شماره
صفحات -
تاریخ انتشار 2003